

Competence field	Bachelor Thesis
Module designation	Bachelor Thesis
Code, if applicable	100134
Subtitle, if applicable	
Semester(s) in which the	8 th semester
module is taught	
Person responsible for	Associate Professor LIAO Aihua
the module	
Lecturer	Professor YANG Jian
	Professor ZHENG Shubin
	Associate Professor LIAO Aihua
	Associate Professor SHI Wei
	Associate Professor HU Dingyu
Language	Chinese
Relation to curriculum	The course is scheduled after all core courses and is designed
	to consolidate the theoretical knowledge acquired and to strengthen
	the link between theory and practice. As the final major activity,
	Bachelor Thesis requires students to apply their knowledge to solve
	a comprehensive and technical problem related to rail vehicle.
Type of teaching, contact	Target students: seniors of Process Equipment and Control
hours	Engineering program
	Type of teaching: theoretical teaching; computer practice
	Contact hours: 12 weeks
	Theoretical teaching, experiment/practice teaching and computer
	practice are arranged by instructors on the basis of each student's
	specific project
	Size of class: each instructor teaches 3-7 students
Workload	Total workload = 900 hours
Credit points	30.0
Requirements according	Students complete literature translation and project tasks
to the examination	(experiment, design or calculation) required by instructor; pass
regulations	mid-term test; complete thesis.
Recommended	Complete all theoretical courses
prerequisites	
Module	Module objectives/intended learning outcomes
objectives/intended	The goal and task of the graduation project is to enable
learning outcomes	students to integrate and apply their theoretical knowledge and
	skills to analyze and solve practical vehicle engineering related
	problems.
	Knowledge:
	Demonstrate understanding of knowledge learned from the

	program as well as methods of literature review and research.
	Skills:
	1. Demonstrate the ability to conduct research and literature
	search and studies;
	2. Demonstrate the ability to analyze theories and
	design/experiment protocols, and develop hardware and software;
	3. Demonstrate the ability to comprehensively process and
	analyze data;
	4. Demonstrate the ability to write thesis, design specifications
	and abstracts (foreign language).
	Competence:
	Students shall acquire the ability to follow the development
	trend of professional and related fields, to study in depth, to acquire
	comprehensive interdisciplinary knowledge and skills related to the
	program, to apply the knowledge and modern engineering tools, to
	have a certain degree of innovation and engineering literacy in
	design, to consider economic, environmental, legal, safety, health,
	ethical and other factors, and to have teamwork and communication
	skills.
Contents	Bachelor Thesis (16 weeks)
	Stage 1: Topic and Bachelor Thesis Assignment Letter*
	Instructor of the graduation project must declare the topic one
	semester before commencement of the bachelor thesis and fill in the
	"Topic Review Form of Bachelor Thesis" and submit it to the
	faculty for approval. On this basis, the "Thesis Assignment Letter"
	shall be completed and issued to students at the beginning of the
	graduation project.
	Stage 2: Project research and literature review* (2 weeks)
	Under guidance of the instructor, students will conduct
	research on the topic they are working on, consult relevant Chinese
	and foreign scientific and technical literature, complete a translation
	of a foreign document (about 5,000 characters), and prepare a
	literature review report accordingly.
	Stage 3: Determination of a general plan of the project** (1 week)
	According to the requirements of the Assignment Letter,
	students shall make a general plan under the guidance of instructors.
	The general plan should contain the following contents: The
	priorities, difficulties and innovations of the project, basic theories
	and fundamental skills involved; stages of implementation, tasks,
	technical indicators and preliminary program for each stage;
	external conditions required for the implementation: including
	computers, software, hardware, experimental devices, instruments,
	equipment and premises, support from departments and units:

	technology outputs to be submitted in order to achieve the ultimate goal of the project include: computer program, experimental setup with data, engineering drawings, and conclusions of theoretical studies. Stage 4: Implementation of the general project plan** (10 weeks) Implementation of the thesis plan marks the most important stage throughout the entire graduation project. It is implemented in stages according to the general plan, which shall be continuously improved according to actual implementation. During this period
	due to different sources and nature of the topic, the instructor shall give targeted guidance. For the graduation project of the program, special attention shall be paid to: theoretical research and engineering applications; rigorous evidence seeking and bold innovation, and enhancement of computer applications and hands-on laboratory skills. Students' progress will be reviewed at mid-term.
	Stage 5: Writing thesis for the graduation project** (2 weeks) The graduation thesis reflects outcome of the graduation project and should be completed independently by the student under guidance of instructor. The format of the thesis must be in strict accordance with the uniform format issued by the Teaching Affairs Office of the University. The bachelor thesis and its attachments shall be submitted in written and electronic version on time.Stage 6: Review and defense of the bachelor thesis (1 week) After completing the bachelor thesis, the instructor will review, revise and grade it. Once submitted, one or two faculty members will be appointed by the departmental thesis defense team to evaluate and grade the thesis.
Study and examination requirements and forms of examination	 Final score includes: Attendance (30%), periodic assessment (30%) final assessment (graduation defense) (40%). 1. Attendance (30%): Student's initiative and ability throughout the
	 comprehensive design process will be assessed and the instructor will give the grade 2. Periodic assessment (30%): The enterprise and faculty members will review the design reports submitted by the student and give a grade accordingly. 3. Final assessment (40%): Student's defense grade following the comprehensive design process
Media employed	Multimedia computers, projectors, laser pointers, blackboards, chalks

Reading list	1. Required books
	[1] TAN Fuxing, QIU Weihua, FANG Yu. Introduction to Urban
	Rail Transit. Beijing: China Railway Publishing House, 2017
	[2] FANG Yu, SHI Wei, SHI Xuan, et al. Introduction to Urban
	Railway Vehicle. Beijing: China Railway Publishing House, 2012.
	[3] WANG Boming. Urban Rail Transit Vehicle Engineering.
	Chengdu: Southwest Jiaotong University Press, 2007.
	[4] Edited by XU Guoqing. Electric Power Transmission of Urban
	Rail Transit Vehicle. Shanghai: Shanghai Science and Technology
	Press, 2003.
	[5] ZHENG Shubin, ZHU Wenliang, CHAI Xiaodong. Network
	Control Technology of Urban Railway Train, Beijing: China
	Railway Publishing House, 2017
	[6] YAO Huiming, TAN Fuxing. Braking System of Urban Rail
	Transit Vehicle, Beijing: China Railway Publishing House, 2018.

Note: In Contents,** for key knowledge points, * for important knowledge points, and the rest for general information.